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Abstract— Hurricanes cause power outages in the coastal areas of 
the United States every year. Previous studies show that the 
integration of weather forecast data within power system 
operation can substantially reduce such outages. However, 
preventive power system operation, modeled as a stochastic unit 
commitment, is extremely computationally burdensome, and, 
thus not applicable to real systems. The present paper aims to 
address this challenge by developing a computationally-efficient 
stochastic unit commitment model. The proposed algorithm 
proactively schedules generation units during hurricanes, taking 
the hurricane-induced damages into consideration. The proposed 
model was able to solve a large-scale 2000-bus Texas system in 7 
hours, achieving an acceptable level of computational tractability. 
In the simulated hurricane, the proposed model was also able to 
avoid 80% of the power outages by only adding 5% to the 
dispatch cost. The results confirm the viability of stochastic unit 
commitment as a preventive operation tool to reduce the power 
outages during hurricanes.  
 
Index Terms— Stochastic unit commitment, hurricane, power 
system reliability, transmission outage, preventive operation, 
large-scale systems, load shedding, power outage. 

I. INTRODUCTION 
Hurricane is among nature’s most destructive and powerful 

disasters causing substantial discomfort every year [1][2]. 
Seasonal hurricanes are common to hit the east coast of the 
U.S. just below twice on average every year and cause billions 
of dollars in damages to infrastructure, including power 
system. After a hurricane hits, utility crews are dispatched 
towards the affected region to repair the damages and 
minimize the power outages. Timely restoration is necessary 
and vital for the people, who live in the affected area. In 2005, 
hurricane Katrina destroyed 181 power lines, 3,478 
transformers and over 263 substations [3]. In 2012, hurricane 
Isaac was responsible for the destruction of 95 transmission 
lines, and over 144 substations led to over 1 million homes to 
lose their power for days while over 12,000 workers were 
trying to restore the power [4]. Improving the resilience of the 
power system during hurricanes can bring about the substantial 
level of relief to the society and alleviate its disastrous 
consequences. Given the substantial level of damage to power 
system components, this paper aims to study if the final 
impacts, regarding a power outage, can be reduced using 
improved operation models. 

The ability to evaluate the power network before the 
hurricane landfall can help improve the operator preparedness 
in advance of emergency [5]. Different statistical and 
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analytical methods are being used to evaluate the performance 
and reliability of the power system in confronting with severe 
weather conditions. Statistical models use historical outage 
statistics and reliability data to estimate power outages in the 
future when physical data and prediction of weather condition 
are available [6]. Some researchers have focused on the 
estimation of the failure rate of different components [7] and 
attempted to estimate system reliability by using such 
information [8][9]. Authors of [10] claim that it is possible to 
reduce the risks and failure rate by having dynamic 
maintenance and maintain the old components. Same authors 
have also proposed a cost-effective framework, which 
facilitates the repair and restoration of the power system for 
the IEEE 118-bus system [11].  

Probabilistic nature of the failure of components in severe 
weather condition makes it natural to use stochastic 
programming. The major problem with stochastic 
programming and the vast size of power network affected by 
the hurricane is the computation burden and for most cases the 
required hardware capabilities such as available memory to 
store the problem and solve it. From the very first 
implementation of stochastic programming in power network 
in 1996, researchers have relied on model simplifications and 
scenario selection to reduce the calculation requirements, even 
for educational size systems such [12], [13]. There also exist 
studies, where enhanced the formulations are used, which take 
into account all sources of uncertainty in the network operation 
[14]–[16]. Recent research proposes an efficient approach to 
use stochastic programming in large systems [17]. However, 
this is mostly limited to the uncertainty in renewable power 
generation and special assumptions related to their generation. 
Despite the enhancements over the past two decades, problem 
size and the computation burden remain to be the main 
challenge of implementation for real-world large-scale 
systems. In the specific case of preventive power system 
operation during hurricanes, our previous work [18]–[20] 
faced similar challenges. We were able to show that stochastic 
optimization can effectively reduce power outages; however, 
the results were obtained for small-scale systems and the 
solution time was extremely long. The present paper aims to 
address these challenges.  

To do so, this paper develops a method to utilize hurricane 
data (through the weather forecast) within the power system 
scheduling (unit commitment) in order to reduce the power 
outage at the minimum cost during a hurricane. The processing 
and memory requirements stay within the acceptable range for 
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a large-scale real-world network in the presence of hurricane 
effects in a vast region.  

Three steps should be taken to generate meaningful results: 
hurricane forecast in the area of study, probabilistic estimation 
of the component outages, and finally solving the stochastic 
unit commitment problem. This paper exclusively focuses on 
the third step. The objective is to determine the day-ahead 
dispatch of generation units to achieve minimum cost and 
minimum power outage.   

The rest of this paper is organized as follows: in section II, 
hurricanes and their effect on the power system is discussed. 
Section III describes and formulates the problem. In section 
IV, the case study is presented. Finally, in section V, the results 
and conclusion are discussed.  

II. HURRICANES AND POWER NETWORKS 
June 1 to November 30 is the official hurricane season for 

Atlantic Basin. Millions of people are left without power for 
days and in some cases weeks during this season. Hurricane is 
the most severe cyclone in term of sustained wind speed with 
the minimum wind speed of 74 mph [21].  

Even a weak hurricane can cause damage to the 
transmission and distribution networks and result in a power 
outage. Hurricanes and storms can damage or uproot 
transmission and distribution poles, especially when soil 
becomes saturated with water, which is shared with heavy 
hurricane precipitation. Flying objects carried by the wind can 
also hit poles and cables directly and damage transmission 
lines. While the overhead transmission and distribution 
networks are vulnerable to hurricanes and even storms, it is 
unlikely that hurricanes damage power plants directly [22]. 
This paper focuses on day-ahead generation scheduling during 
hurricanes, while taking the likelihood of hurricane-induced 
line outages into account. Note that it is possible that a 
generation unit, gets partially disconnected from the network 
due to damaged transmission lines. Line outage in this study is 
modeled as a time-dependent probability for each line, 
calculated based on hurricane forecast and simulation of power 
poles in ANSYS software.  

III. PROBLEM DESCRIPTION 
Stochastic unit commitment is a computationally 

demanding problem even for the small systems. The number 
of uncertainties can affect this complexity. In this paper, the 
objective is to solve the unit commitment problem and 
determine the best generation schedule in a way that the 
generation cost and lost load (load shedding) are minimal. The 
stochastic unit commitment problem should be solved in the 
presence of uncertainties caused by the hurricane. Moreover, 
scenarios regarding the uncertainties should be identified as a 
part of input information. 

Hurricanes sweep the area of study and impact different 
power system components. As mentioned, the generation units 
are not a concern in this study, and the main source of 
uncertainty is the status of transmission lines. As the hurricane 
passes through the area, it hits different lines at different times 
with the different level of strength. As a result, the failure 
model, used in this paper, identifies probabilistic line statuses 

during each period. For each line in the path of the hurricane, 
there is a vector that illustrates the possibility of line outage 
over time. The final table includes all the affected lines with 
the hourly possibility of outage for each line.  

In order to achieve the objective of this paper, a preventive 
optimization algorithm is developed. The algorithm is based 
on a DC power flow unit commitment (UC) formulation, 
considering contingencies caused by transmission line 
outages. Overgeneration and load shedding are allowed and 
penalized with a high cost in the objective function. Using this 
model, a preventive operation plan can be obtained for the day-
ahead market to reduce penalties, caused by load shedding or 
over generation when extreme weather events like hurricanes 
occur. 

The general formulation of the problem is shown in (1) to 
(6). In these equations, indices: s, t, g, b and l stand for scenario 
number, time, generation unit number, bus number and line 
number, variables: cls, co, π, u, p, ls, d, o, and lf represent load 
shedding cost, over-generation cost, probability of scenario, 
binary generation commitment status, power generation, load 
shedding, demand, over-generation value, and line flow, and 𝝌 
is a corresponding equation for generation cost, respectively. 
The objective function is expressed by (1), which minimizes 
the dispatch cost of the system considering generation 
dispatch, over-generation and load shedding. Note that  𝝌  
covers all the costs related to generation including marginal 
fuel cost, no load cost, start-up and shut-down cost. Load 
balance, considering the load shedding and over-generation is 
expressed by (2), and generation limits by (3). (4) forces the 
optimization to have the same commitment for every 
generation unit over all the scenarios, and (5) expresses the 
thermal line flow constraints. Equation (6) represents all other 
common unit commitment constraints including generation 
ramp-up/down limits, minimum up and down time for 
generators, and line flow constraints. Since contingencies are 
modelled explicitly, reserves are not modeled in this 
formulation. 
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(𝒖, 𝒑) ∈  £ (6) 
 

As the topology of network changes over the time (due to 
the line outage because of the hurricane), if large-scale 
network data applied to (1) to (6) and line flow calculations be 
done by using conventional BƟ formulation, the number of 
variables and constraints even for one single scenario would 
be enormous and the problem would be almost impossible to 
solve using most of the state of the art workstations. On the 
other hand, in the creation of scenarios, each line can be online 
or offline at different times. As an example, considering a total 
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number of 100 lines out of thousands affected by the hurricane, 
the total number of possible scenarios would be 2100×24. It is 
impossible to model all these scenarios, as it would result in 
extreme computational burden, beyond the capabilities of our 
computers. 

Using sensitivity factors and flow-canceling transactions, 
as described in [23], can reduce the computational complexity 
and number of variables significantly, especially in the case 
with line outages. Flow-canceling transactions are injection 
pairs at the two end of a transmission line that can emulate a 
line outage, without affecting the network topology and shift 
factors. Including flow canceling transactions the rest of the 
network would see the line as open, while the shift factors 
remain unchanged. The flow-canceling transaction for line k, 
𝑣𝑘 , can be calculated by using (7). In (7), 𝜑

𝑘

𝑘𝑓𝑟𝑜𝑚/𝑡𝑜 𝑏𝑢𝑠 
represents the injection shift factor related to line k (refer to 
[24] for further information about how to calculate the 
injection shift factors for the network). 

In common application, because of dependency of 𝑣𝑘 to the 
line flow before outage, this method works for a single line 
outage and the simple superposition does not apply. As the 
number of line outages is more that one for the purpose of this 
paper, it is necessary to adjust the flow-canceling transactions 
to be accurate with multiple line outages. To do so, the original 
flow-canceling equation, as shown in (8), is applied for each 
scenario and every hour as a constraint to the main 
optimization problem. In (8), “o” is a set of all offline lines. As 
an example, if “o” includes three outages, a set of linear 
equations with three equations and three unknowns would be 
appeared in constraints. Including these equations in the 
optimization problem as constraints, will solve the equations 
simultaneously. This method is successfully used in the 
existing literature for optimal transmission switching [23]. If 
the only line in set “o”, is k, then (8) can be simplified to (7). 

 
 𝑙𝑓𝑘 − 𝑣𝑘. [1 − [𝜑

𝑘

𝑘𝑓𝑟𝑜𝑚 𝑏𝑢𝑠 − 𝜑𝑘
𝑘𝑡𝑜 𝑏𝑢𝑠]]  =  0 (7) 

𝑙𝑓𝑘 − 𝑣𝑘 + ∑[𝜑𝑜

𝑘𝑓𝑟𝑜𝑚 𝑏𝑢𝑠 − 𝜑𝑜
𝑘𝑡𝑜 𝑏𝑢𝑠]. 𝑣𝑜

𝑂

 =  0 (8) 

 
Even by using sensitivity factor method (such as Line 

Outage Distribution Factor, LODF) and flow canceling 
transactions, the problem size for the real-world network is 
huge. According to benchmarks we have studied for different 
sizes of networks, a big portion of calculation power and 
memory usage is dedicated over the variables and constraints 
related to line flows. In (1) to (6) and (8), every line will be 
monitored for every hour to avoid the thermal capacity 
violation. Hence, an iterative linear optimization algorithm is 
designed to help prevent any unnecessary constraint and 
variable. Fig. 1 illustrates the flowchart of calculation.  

In Fig. 1 flowchart, “A” represents the data reading from 
files; “B” includes initial basic calculations, data conversions, 
and determination of appropriate dimension for variables; “C” 
checks the input data to find any error or incompatible sizing; 
“D” calculates the shift factor arrays for the original topology 
of the network without any outage, and LODF matrix 

corresponding to line outage set for different scenarios; “E” 
defines decision variables and their size alongside with initial 
parameters including acceptable tolerance for IBM CPLEX 
Studio [25]; “E” defines the objective function needed to be 
minimized; “G” adds generation, commitments, load balance, 
and scenario constraints; “H” adds constraints regarding the 
monitored line set and outage set for each scenario and hour; 
“I” solves the minimization and generate temporarily/final 
results; “J” calculates line flow for every line, hour and 
scenario, while “K” decides which line to be monitored for the 
next iteration; “L” removes lines from monitored set if they are 
out for some hours and “M” helps the CPLEX to reduce the 
number of constraints if they are not needed any longer.  

IV. CASE STUDY AND BENCHMARK 
The network which used in this paper to evaluate the 

designed algorithm is ACTIVSg2000: a 2000-bus synthetic 
grid on the footprint of Texas [26], [27]. There are 2000 buses, 
3,206 branches, and 544 generation units. 

A hypothetical hurricane is assumed to pass through the 
region within 24 hours. The affected area is a circle with the 
radius equal to the distance hurricane travel in four hours. The 
path of the hurricane, as well as the location of buses and the 
affected area, is illustrated in Fig. 2. A total number of critical 
affected lines is 47. For each of these 47 lines, there is a 
possibility of being damaged by a hurricane every hour. Fig. 3, 
illustrates the example of outage possibility for a number of 
selected lines. In this figure, line 702 is the first line hit by 
hurricane and line 2,959 is the last.    

To analyze the performance of the proposed algorithm, the 
unit commitment problem is solved by using different standard 
methods. The unit commitment is solved for the original 
network without hurricane and line outage. Results are 
presented in TABLE 1. These results show represent business 
as usual (BAU). All the simulations have been performed with 
the same workstation (Intel® Core™ i7-7700 CPU @ 3.60 
GHz, 16 GB of DDR4 RAM, LITEON CV3-8D512 SSD) and 
software (ECLIPS IDE 4.9 and IBM CPLEX 12.8). As it is 
obvious from TABLE 1, the proposed algorithm is as accurate 
as other methods and about 70 times faster than BƟ method.  

Solving the stochastic unit commitment in the case with a 
hurricane and line outage uncertainty is an objective of this 
paper to prove the performance and application of the 
proposed algorithm. Scenario reduction is performed by 
having different thresholds in possibilities for different 
scenarios. For the first scenario, the threshold is 1% which 
means any chance of line outage more than 1% would be 
considered as a certain outage in this scenario (worst-case 
scenario). For the 10th scenario, best-case scenario, the 
threshold is considered 100% which means only those lines 
which we are sure about their failure would be considered 
offline, and the rest of lines are assumed in-service. The 
thresholds for other scenarios are as 50%, 60%, 70%, 75%, 
80%, 85%, 90%, and 95%, respectively. 

Neither BƟ nor standard shift factor was able to solve the 
stochastic problem, due to memory issues. We also tried to run 
them on a more powerful computer with 64GB of RAM and 
still got error in calculations because of low available memory. 
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The average cost of generation in the base case is $15.1 
MWhr-1 while the most expensive marginal generation cost by 
any generator is $29.7 MWhr-1. Having the priority of 
supplying as much load as possible, the load shedding cost is 
considered equal to $15,000 MWhr-1 which is about 500 times 
more expensive than the most expensive marginal generation 
cost. Running the simulation using the proposed algorithm, the 
minimum cost is calculated at $106,063,257. Compared with 
the base case, this cost is much higher. The main reason for 
this jump in the total cost is load shedding cost (penalty). Over 
ten scenarios, the expected amount of load shedding is 5,711 
MWhr (0.0427% of total demand), and by considering the 
penalty cost for load shedding, the generation cost can be 
calculated as $21,236,722 which is slightly (+5.2%) more than 
what is calculated with no outage, in TABLE 1. The additional 
$1,050,853 cost in generation is a direct result of line outage, 
and preventive scheduling of more expensive generation to 
reduce load shedding as much as possible. 
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Fig. 1. Flowchart of Calculations 

Using forecasted data of weather and components outage 
helps to minimize the load shedding and over-generation.  
TABLE 2 compares the load shedding and a number of critical 
lines (line with power flow close to its thermal limitation) for 
each scenario individually and the expected values for two 
cases. In the first case, the right-hand side of the table, the line 
outage possibility is not implemented, and the unit 
commitment problem is solved based on business as usual 
case. This means the system is scheduled like a typical day and 
later lines went out of service. The second case, the left-hand 
side of the table, is calculated by using the proposed algorithm 

to minimize the load shedding, over-generation, and total cost. 
As can be seen in TABLE 2, the proposed model can reduce 
almost 80% of the load shedding. However, the number of 
critical lines in the system increased as a cost of reducing load 
shedding. 

 
Fig.  2.  Case study: Bus location (Triangles) and hurricane path 

(Arrow)

 

Fig.  3. Line outage possibilities for the selected lines 

TABLE 1: UNIT COMMITMENT RESULTS FOR THE ORIGINAL NETWORK 

Objective Function 
Value ($) Power Flow Solver Calculation Time 

(Minutes) 
20,185,849    BƟ 138 
20,185,911   Shift Factor 18 
20,185,869   Proposed Algorithm 2 

TABLE 2: LOAD SHEDDING AND NUMBER OF CRITICAL LINES REGARDING 
EACH SCENARIO 

 Proposed Algorithm Business as Usual 

 Load Loss 
(MWhr) 

Number of 
Critical Lines 

Load Loss 
(MWhr) 

Number of 
Critical Lines 

Scenario 1 11,252 93 52,955 54 
Scenario 2 9,028 94 45,741 52 
Scenario 3 10,281 89 45,380 52 
Scenario 4 8,799 88 44,170 50 
Scenario 5 8,745 87 44,153 50 
Scenario 6 9,001 55 39,186 15 
Scenario 7 0 41 6,914 10 
Scenario 8 0 40 1,113 6 
Scenario 9 0 41 0 10 
Scenario 10 0 41 0 10 

Expected 5,711 67 27,961 31 
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 During the simulation of many cases with different 
parameters, it is realized that the selected load shedding 
cost/penalty has a significant effect on solving the problem. As 
mentioned in the previous section, as the main purpose here is 
to supply as much demand as possible, the load shedding 
penalty is chosen to be a huge number. However, considering 
lower penalty cost for load shedding results in significantly 
lower required time to solve the problem and puts less lines in 
critical flows. TABLE 3 includes results for different values 
for load shedding penalty cost. 

 TABLE 3: RESULTS WITH DIFFERENT VALUES OF LOAD SHEDDING COSTS 

Load Shedding 
Cost ($/MW) 

Generation 
Cost ($) 

Expected 
Load Loss 

(MW) 

Number of 
Critical 
Lines 

Calculation 
Time 

(Minutes) 
15,000 21,236,722 5,711 67 423 
3,000 20,854,374 6,262 62 195 
1,500 20,578,476 6,430 60 80 
600 20,561,629 6,743 59 72 
300 20,488,406 6,945 58 31 

 
It can be inferred from TABLE 3 that if the load shedding 

cost is securely higher than energy generation cost, the amount 
of unserved load does not change significantly, while the 
solution time decreases substantially and the number of critical 
lines would be lower. 

V. CONCLUSION 
Large-scale real-world power networks are among the most 

complex systems to operate analyze. Unit-commitment is a 
problem that system operators need to solve for day-ahead 
scheduling of the units. If the system is expected to experience 
exposure to a hurricane, with the possibility of component 
damage, stochastic unit commitment can reduce power 
outages. However, this problem would be hard to solve due to 
the large size of the system and the level of uncertainties. In 
this paper, an enhanced stochastic unit-commitment algorithm 
is proposed, which can be solved using average workstations 
within an acceptable time of less than 7 hours for a 2000-bus 
system. Obtained results for the case study show that it is 
possible to schedule the generation in a way that avoids 80% 
of the power outage by only increasing the generation cost by 
5%. It should be noted that the presented analysis is only valid 
for transmission networks and not the distribution networks. 
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